Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 109, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609920

RESUMO

BACKGROUND: Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS: In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION: The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.


Assuntos
Celulase , Oryza , Detergentes , Aspergillus , Projetos de Pesquisa
2.
Bioprocess Biosyst Eng ; 47(2): 249-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197955

RESUMO

ß-galactosidase has been immobilized onto novel alginate/tea waste gel beads (Alg/TW) via covalent binding. Alg/TW beads were subjected to chemical modification through amination with polyethyleneimine (PEI) followed by activation with glutaraldehyde (GA). Chemical modification parameters including PEI concentration, PEI pH, and GA concentration were statistically optimized using Response Surface methodology (RSM) based on Box-Behnken Design (BBD). Analysis of variance (ANOVA) results confirmed the great significance of the model that had F value of 37.26 and P value < 0.05. Furthermore, the R2 value (0.9882), Adjusted R2 value (0.9617), and predicted R2 value (0.8130) referred to the high correlation between predicted and experimental values, demonstrating the fitness of the model. In addition, the coefficient of variation (CV) value was 2.90 that pointed to the accuracy of the experiments. The highest immobilization yield (IY) of ß-galactosidase (75.1%) was given under optimized conditions of PEI concentration (4%), PEI pH (9.5), and GA concentration (2.5%). Alg/TW beads were characterized by FT-IR, TGA, and SEM techniques at each step of immobilization process. Moreover, the immobilized ß-galactosidase revealed a very good reusability as it could be reused for 15 and 20 consecutive cycles keeping 99.7 and 72.1% of its initial activity, respectively. In conclusion, the environmental waste (tea waste) can be used in modern technological industries such as the food and pharmaceutical industry.


Assuntos
Alginatos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Microesferas , Concentração de Íons de Hidrogênio , Alginatos/química , Chá , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , beta-Galactosidase/química
3.
Int J Biol Macromol ; 230: 123139, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621737

RESUMO

Protease from Bacillus thuringiensis strain-MA8 was successfully immobilized onto activated Alginate/dextrose (Alg/dex) beads as a new carrier with immobilization yield 77.6 %. The carrier was characterized using Scanning electron microscopy and Fourier transforms infrared spectrophotometer at every step of the immobilization process. Immobilized protease showed an increase of 10 °C in the optimum temperature compared to the free enzyme. However, the optimum pH for both the free and the Alg/dex/protease was found to be 8. The lower activation energy and deactivation rate constant and the higher half-life time and D-value confirm that the new Alg/dex carrier is suitable for promoting enzyme stability. The raise in thermal stability is also shown by the increased deactivation energy of the Alg/dex/protease compared to its free form by 1.47-fold. Likewise, the enzyme immobilization enhancement of Alg/dex/protease was accompanied by a marked increase in enthalpy and Gibbs free energy. The negative entropy for both free and Alg/dex/protease indicates that the enzyme is more stable in thermal deactivation. The Km and Vmax for the Alg/dex/protease were 2.05 and 1.22-times greater than the free form. Furthermore, Alg/dex/protease displayed good reusability as it retained 92.7 and 52.4 % of its activity after 8 and 12 hydrolysis cycles.


Assuntos
Alginatos , Peptídeo Hidrolases , Alginatos/química , Endopeptidases/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glucose , Concentração de Íons de Hidrogênio , Cinética , Peptídeo Hidrolases/metabolismo , Temperatura
4.
Int J Biol Macromol ; 225: 361-375, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375672

RESUMO

Enzyme-modified cheese (EMC) is a concentrated cheese flavor that is produced enzymatically from dairy substrates to provide an intense source of cheese flavor with broad applications. In this study, EMC was produced by enzymatic biotransformation from a new bacterial isolate described and molecularly identified as Bacillus thuringiensis strain-MA8. Optimization of protease production conditions using one-variable-at-a-time followed by multi-factorial (Plackett-Burman and Box-Behnken) designs increased production by 7-fold. Protease was used at different concentrations (300 and 900 U/100 g curd) as a cost-effective source of concentrated cheese flavor in the EMC preparation. Sensorial evaluation of EMC revealed that the overall acceptability, flavor, and texture were improved from the 2nd day compared to the control, and then decreased on the 4th day without any apparent bitterness. The chemical characteristics of EMC showed that the addition of protease extracts increased the total volatile fatty acids, water-soluble nitrogen, and acidity of EMC significantly (p≤0.05) compared to the control. The amino acids profile revealed that EMC1 which was treated with (300 U/100 g curd) protease had the highest essential amino acids (EAA) and EAA/total amino acids ratio. Nutritional parameters including protein efficiency ratio, biological value, and chemical score of EMC were higher than control based on Val, Met + Cys, Ile, Leu, and Phe + Tyr amino acids. Also, Scanning Electron Microscopy showed significant changes in EMC compared to the control. In conclusion, the addition of (300 U/100g curd) of protease revealed good EMC characteristics without any apparent defect.


Assuntos
Bacillus thuringiensis , Queijo , Peptídeo Hidrolases/metabolismo , Queijo/microbiologia , Bacillus thuringiensis/metabolismo , Aminoácidos , Proteínas , Endopeptidases , Aminoácidos Essenciais
6.
Biotechnol Rep (Amst) ; 26: e00443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32154128

RESUMO

Bacillus subtilis strain-MK1 α-amylase was successfully immobilized on Chitosan-magnetic nanoparticles (Ch-MNP) that had been modified with polyethyleneimine (PEI) and glutaraldehyde (GA). Optimization of Ch-MNP/PEI/GA beads modification by Central Composite design enhanced the immobilization yield (IY %) by 1.5-fold. Ch-MNP/PEI/GA was characterized before and after modification and immobilization by FTIR and SEM. Ch-MNP/PEI/GA/Enzyme showed the same pH optima of free enzyme, while an elevation 10 °C in temperature optima was observed after its immobilization. Ch-MNP/PEI/GA/Enzyme displayed higher Km and Vmax values (2.1 and 1.2-fold) and lower Vmax/Km ratio (1.7-fold), respectively than the free enzyme. Compared to the free enzyme, Ch-MNP/PEI/GA/Enzyme exhibited lower activation energy, lower deactivation constant rate, higher D-values, higher half-life, and higher energy for denaturation. Immobilization of α-amylase increased enthalpy (4.2-fold), free energy (1.1-fold) and decreased entropy (4.6-fold) of thermal inactivation. A significant increase in pH stability of Ch-MNP/PEI/GA/Enzyme was observed especially at alkaline pH values. In addition, Ch-MNP/PEI/GA/Enzyme preserved 83.2 % of its initial activity after 15 consecutive cycles. When storing Ch-MNP/PEI/GA/Enzyme at 4 °C the residual activity was 100 and 86 %, respectively after 21 and 40 days. Finally, immobilization process improved the catalytic properties and stabilities, thus raising the suitability for industrial processes with lower cost and time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...